
International Journal of Management, IT & Engineering

Vol.14 Issue 9, September 2024,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

1 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Managing Identity in Salesforce CRM

Prajeet Gadekar


 Abstract

 Identity solutions in Salesforce are crucial for ensuring secure and seamless

access to the platform. They help in managing user identities, enforcing

security policies, and providing a single sign-on (SSO) experience, which

enhances user productivity and reduces the risk of unauthorized access. By

integrating identity solutions, organizations can streamline user management,

improve compliance with regulatory requirements, and protect sensitive data.

Two common identity protocols used in Salesforce are SAML (Security

Assertion Markup Language) and OIDC (OpenID Connect).

SAML is an XML-based protocol that allows secure web domains to

exchange user authentication and authorization data. It enables SSO by

allowing users to authenticate once and gain access to multiple applications

without re-entering credentials. OIDC, on the other hand, is a modern

authentication protocol built on the OAuth 2.0 framework. It provides an

identity layer on top of OAuth 2.0, allowing clients to verify the identity of

the end-user based on the authentication performed by an authorization

server. Both SAML and OIDC play a vital role in enhancing security and

user experience in Salesforce environments.

In this paper we look in the details of both approaches and compare them and

come to a conclusion and which approach works best in which use cases.

Keywords:

Salesforce;

Identity Solutions;

SAML;

Open ID Connect;

OIDC.

Copyright © 2024 International Journals of Multidisciplinary Research

Academy.All rights reserved.

Author correspondence:

Prajeet Gadekar,

Salesforce Inc,

1095 Avenue of the Americas,Newyork city, New York, 10036, USA

Email: prajeetgadekar@gmail.com

1. Introductionto Identity Methods

1.1. SAML

Lets first start with SAML. At the very core of this concept is trust. There is a trusted

relationship between SP’s (applications) and the Identity Provider (IDP). The SP’s will

rely on the IDP to make the decision from them. When a user requests access to an

application, the first thing the app will do is check if the user already has a running session

on the app, if so then great, the user just gets the access. If the user does not have an

ongoing session the application will generate a SAML request for the IDP. The user will

then be authenticated by the IDP, perhaps their credentials could be validated against an

Identity store. The IDP could also challenge the user and ask them to go through a second

form of authentication (MFA). Once it has completed all the checks it is supposed to, the

 ISSN: 2249-0558Impact Factor: 7.119

2 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

IDP will generate an assertion. This is where trust plays a role. The application or the SP

trusts the assertion. Trust needs to be secure so there are certificates involved in signing the

request and encoding to establish this trust (more on that later).. The SAML assertion

identifies the user that is then matched by the SP to identify a user in the application and

access is granted to the user.

Here is the SP initiated flow

Figure 1. SP initiated SAML flow

A more simpler but similar flow is the IDP initiated flow. In this flow the user

authenticates himself with the IDP and then clicks on a link to log in to the application.

The flow is initiated by the IDP so there is no need to send the SAML request to the IDP.

Figure 2. IDP initiated SAML flow

Here are some key terms to understand in a SAML flow

Issuer : The unique identifier of the identity provider

Entity ID : Unique URL that identifies who the SAML assertion is intended for,

essentially the SP. Note that both the issuer and entity id values in the SAML assertion has

to match the values in the settings in Salesforce and the IDP. So unless it does match we

are going to get an error. Specifically the Audience attribute in the SAML has to match

entity ID on the SSO settings page.

Subject : The nameidentifier element in the Subject statement will specify the user.

Most common is for the SAML User ID type to be Dalesforce User objects federationID.

You need to make sure you have this same value in the Federation id field of your User

Object. It could be an email or something like an employee id of an organization. This is

the primary mechanism to map users between the IDP and your Salesforce org. There are

alternate attributes in which you can specify the user, and how it relates to Salesforce,

 ISSN: 2249-0558Impact Factor: 7.119

3 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Salesforce username is one of them but it’s unusual to expect your IDP to know the

Salesforce user name. This is how subject looks like when using federationID

IDP’s authentication certificate : Remember the assertion is signed. So your IDP is

going to use a private key that no one else has, to sign the request. If you want to validate

the signature, the IDP will provide a public key to all its recipients. This public key is

stored in salesforce and referred to in the SAML settings. This certificate is the primary

mechanism to establish trust between the IDP and Salesforce. If Salesforce is able to

validate the signature with the public key it knows that the assertions could only have

come from the IDP because no one else has the private key for that signature.

Assertion Decryption Certificate: The contents of the assertion, that is the user’s

information etc can be encrypted by the IDP. So they are essentially encrypting with the

public key and they will give the private key to decrypt the content to only parties that they

want to decrypt the content. So essentially the IDP will provide a Salesforce with the

private key that will be uploaded in the settings as a decryption certificate.

Request signing Certificate: When Salesforce does not have a session and generates a

SAML request to be sent to the IDP, that request can be signed. It has to be signed by a

private key, so this cert represents the private key to signing the request. For the SP

initiated flow we will have to provide a public key to the IDP so they can validate the

signature.

Request binding : Based on the preference of your IDP the SAML request could either

be a HTTP POST sending a SAML message using a bse64-encoded HTML form OR a

HTTP Redirect sending a base64-encoded and URL encoded SAML messages with URL

parameters.

Single Logout: If the desire is to log out of all applications that the IDP supports when

they click login out of any one application, generally a chaining mechanism is used. In

Salesforce we specify a URL to redirect after the Salesforce session is logged out. This

URL could point to the IDP single logout mechanism which can make sure every

application’s logout method is invoked.

Just in Time: If we want to provision users in real time when they try to login for the

first time or update the user record when they login the concept of just in time provisioning

can be used. IT consists of a JIT Handler apex class that has the logic to create the user.

Note that JIT is useless when it comes to deprovisioning.

Identity Provider Login URL : This is where Salesforce or the Service provider will

redirect when there is not active session and needs IDP’s intervention.

ACS URL’s : This is where the IDP will redirect with the assertion. The SAML request

usually sends the ACS URL to the IDP. A list of ACS URL’s are also added to the IDP’s

settings, a request cannot have an ACS URL that is not already in the IDP settings. When

the SAML setting is saved in Salesforce ACS URLs for core and any experience sites are

generated.

 ISSN: 2249-0558Impact Factor: 7.119

4 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

RelayState parameter: It’s an important parameter that stores the exact resource location

within the SP. You generally do not have to deal with it until you are doing something

custom in your solution like posting/redirecting a request to a custom endpoint instead of

the IDP directly. Your solution will have to make sure it keeps propagating the relaystate

so the exact resource on the SP can be reached when the assertion is posted.

1.2. OIDC

Now lets understand Open ID Connect.

OpenID Connect (OIDC) is an identity layer built on top of the OAuth 2.0 protocol, which

allows clients to verify the identity of an end-user based on the authentication performed

by an authorization server. It also enables clients to obtain basic profile information about

the end-user in an interoperable and REST-like manner. OIDC uses OAuth 2.0 methods

such as the Authorization Code Flow, Implicit Flow, and Hybrid Flow to facilitate secure

authentication and authorization. The Authorization Code Flow is the most commonly used

method, where the client first obtains an authorization code from the authorization server

and then exchanges it for an access token and an ID token. The ID token is a JSON Web

Token (JWT) that contains information about the user, such as their identity and

authentication details.

In Salesforce, OpenID Connect is implemented to allow users to log in using their

credentials from an external identity provider (IdP) that supports OIDC, such as Google or

Facebook. This is achieved by configuring Salesforce as a relying party (RP) in the OIDC

flow. Salesforce requires the use of certificates to ensure secure communication between

the IdP and Salesforce. These certificates are used to sign and validate the tokens

exchanged during the authentication process. When a user attempts to log in, Salesforce

redirects them to the IdP's authorization endpoint, where they authenticate. Upon

successful authentication, the IdP sends an authorization code back to Salesforce, which is

then exchanged for an ID token and access token. Salesforce uses the ID token to verify

the user's identity and grant access to the appropriate resources.

It is important to distinguish between authorization and authentication in this context.

Authentication is the process of verifying the identity of a user, ensuring that they are who

they claim to be. This is achieved through the OIDC protocol, where the IdP authenticates

the user and issues an ID token. Authorization, on the other hand, is the process of

determining what resources the authenticated user is allowed to access. This is managed

through OAuth 2.0, where the access token obtained during the OIDC flow is used to

authorize the user's access to specific resources and services. By combining these two

processes, OIDC provides a secure and seamless way to authenticate users and authorize

their access to resources in Salesforce.

 ISSN: 2249-0558Impact Factor: 7.119

5 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 3. OIDC flow

2. ResearchMethod

For our study we implemented both SAML and OIDC based authentications with

Saelsforce as the Service provider and Okta as the Identity provider.

The process involved configurations on either side and a set of certificates to establish

trust. We used self signed certificates. We also tried using both methods to authenticate in

to mobile apps and API integrations both soap and rest.

Salesforce was configured both as an SP and IDP in SAML set ups. Similarly

Salesforce was set up as a relying party and it another scenario it as also set up as identity

provider that was used to connect to external apps.

As we proceded we documented certain considerations that could help in the

comparison and assist upfront when trying to make a decision either way.

These are some of those considerations

1. Where will be the identity store

2. Is there already an IDP that is used to log in to other applications

3. How will users be provisioned in Salesforce

4. How do we inactivate users in Salesforce

5. Do Salesforce profiles, permission sets, roles etc map to anything that the IDP

determines.

6. What protocol should we be using

7. Can Salesforce act as an identity provider for itself and some sales or service related

applications.

 ISSN: 2249-0558Impact Factor: 7.119

6 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

8. How do we provide multi factor authentication (Remember now it is mandatory

according to Salesforce’s client contract)

9. Is there a requirement for a single logout (logging out of all applications when logging

out of the IDP).

3. ResultsandAnalysis

Here are the results on our comparison. At a very high level. Both methods are able to

solve most use cases but are better in specific use cases. SAML is very limited in mobile

use cases.

Table 1. Comparison on SAML and OIDC

Feature SAML OIDC (OpenID Connect)

Protocol Type XML-based JSON/REST-based

Primary Use Case Enterprise SSO (Single Sign-On) Consumer SSO and API

authentication

Complexity More complex Simpler and more modern

Token Format XML (SAML Assertions) JSON Web Tokens (JWT)

Identity Provider IdP (Identity Provider) OP (OpenID Provider)

Service Provider Service Provider | SP (Service

Provider)

RP (Relying Party)

Mobile Support Limited Excellent

Standardization Standardization. Older, well-

established

Newer, rapidly growing

Use in APIs Rarely used, Not suitable Commonly used

Session

Management

Session Management | More

complex

Simpler

Adoption Widely adopted in enterprise

environments

Widely adopted in enterprise

environments | Increasingly

adopted in modern apps

Security Strong, Mature security features Strong and modern security

features

Interoperability High but requires more config Higher and easier to config

User experience Redirects can make experience

less optimal

Seamless user experience

4. Conclusion

Both SAML (Security Assertion Markup Language) and OIDC (OpenID Connect) are

robust protocols for authentication and authorization, each with its own strengths and ideal

use cases.

SAML is a mature, XML-based protocol that has been widely adopted in enterprise

environments for Single Sign-On (SSO). It excels in scenarios where complex, secure, and

federated identity management is required, particularly within large organizations. SAML's

 ISSN: 2249-0558Impact Factor: 7.119

7 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

extensive support for enterprise applications and its well-established security features make

it a reliable choice for internal corporate systems, legacy applications, and environments

where XML-based communication is already in place.

OIDC, on the other hand, is a more modern, JSON/REST-based protocol designed with

simplicity and flexibility in mind. It is particularly well-suited for consumer-facing

applications, mobile apps, and API authentication. OIDC's use of JSON Web Tokens

(JWT) and its seamless integration with OAuth 2.0 make it an excellent choice for modern

web applications, microservices architectures, and scenarios where quick and easy

integration is a priority.

Here are some recommendations specific to use cases

1. Enterprise SSO and Legacy Systems:

Use SAML: If you are dealing with enterprise-level Single Sign-On (SSO) requirements,

especially in environments with existing SAML infrastructure or legacy systems, SAML is

the preferred choice. Its robust security features and extensive support for enterprise

applications make it ideal for these scenarios.

2. Modern Web Applications and APIs:

Use OIDC: For modern web applications, especially those that require API authentication,

OIDC is the better option. Its simplicity, use of JSON, and seamless integration with

OAuth 2.0 make it highly suitable for these use cases. OIDC is also ideal for microservices

architectures and applications that need to scale quickly.

3. Mobile Applications:

Use OIDC: If you are developing mobile applications, OIDC is the clear winner. Its design

is mobile-friendly, and it provides excellent support for mobile authentication flows,

making it easier to implement and manage.

4. Consumer-Facing Applications:

Use OIDC: For consumer-facing applications where user experience and ease of

integration are critical, OIDC is the recommended choice. Its modern approach and support

for social logins (e.g., Google, Facebook) enhance the user experience and simplify the

authentication process.

5. Hybrid Environments:

Use Both: In some cases, you may need to support both SAML and OIDC, especially in

hybrid environments where both legacy enterprise systems and modern applications

coexist. Many identity providers support both protocols, allowing you to leverage the

strengths of each where appropriate.

In summary, choose SAML for enterprise-level, complex, and secure SSO needs, and opt

for OIDC for modern, flexible, and scalable authentication solutions, particularly in

consumer-facing and mobile applications.

References`
[1] SAML with Salesforce as SP https://help.salesforce.com/s/articleView?id=sf.sso_saml_setting_up.htm&type=5.

[2] Configuring Salesforce as IDP - https://help.salesforce.com/s/articleView?id=sf.sso_saml.htm&type=5

[3] SF as openID provider https://help.salesforce.com/s/articleView?id=sf.service_provider_define_oid.htm&type=5

[4] SF as relying party https://help.salesforce.com/s/articleView?id=sf.sso_authentication_providers.htm&type=5

